Exploring Novel Bands and Key Index for Evaluating Leaf Equivalent Water Thickness in Wheat Using Hyperspectra Influenced by Nitrogen
نویسندگان
چکیده
Leaf equivalent water thickness (LEWT) is an important indicator of crop water status. Effectively monitoring the water status of wheat under different nitrogen treatments is important for effective water management in precision agriculture. Trends in the variation of LEWT in wheat plants during plant growth were analyzed based on field experiments in which wheat plants under various water and nitrogen treatments in two consecutive growing seasons. Two-band spectral indices [normalized difference spectral indices (NDSI), ratio spectral indices (RSI), different spectral indices (DSI)], and then three-band spectral indices were established based on the best two-band spectral index within the range of 350-2500 nm to reduce the noise caused by nitrogen and saturation. Then, optimal spectral indices were selected to construct models of LEWT monitoring in wheat. The results showed that the two-band spectral index NDSI(R1204, R1318) could be used for LEWT monitoring throughout the wheat growth season, but the model performed differently before and after anthesis. Therefore, further two-band spectral indices NDSIb(R1445, R487), NDSIa(R1714, R1395), and NDSI(R1429, R416), were constructed for the two developmental phases, with NDSI(R1429, R416) considered to be the best index. Finally, a three-band index (R1429-R416-R1865)/(R1429+R416+R1865), which was superior for monitoring LEWT and reducing the noise caused by nitrogen, was formed on the best two-band spectral index NDSI(R1429, R416) by adding the 1,865 nm wavelenght as the third band. This produced more uniformity and stable performance compared with the two-band spectral indices in the LEWT model. The results are of technical significance for monitoring the water status of wheat under different nitrogen treatments in precision agriculture.
منابع مشابه
Above-ground vegetative development and growth of winter wheat as influenced by nitrogen and water availability
Wilhelm, W.W., McMaster, G.S., Rickrnan, R.W. and Klepper, B., 1993. Above-ground vegetative development and growth of winter wheat as influenced by nitrogen and water availability. Ecol. Modelling, 68: 183-203. Assessing the influence of nitrogen and water availability on development and growth of individual organs of winter wheat (Triticum aestivum L.) is critical in evaluating the response o...
متن کاملDetection of the wheat rust disease infected farms using Landsat images
The goal of this study is to identify farms which are affected by wheat rust disease. For this, the sensor data of Landsat 7 satellites in growing season of 2013 and 2014 along with some laboratorial data containing reflectance spectrum of leaf and leaf health degree in different levels of disease are used. The reflectance values of leaf are collected by an ASD spectroradiometer in the range of...
متن کاملWater content estimation in vegetation with MODIS reflectance data and model inversion methods
Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of wat...
متن کاملEstimation of Vegetation Water Content with MODIS data and Radiative Transfer Simulation
Radiative-transfer physically-based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such...
متن کاملبهینه سازی اقتصادی آب آبیاری و کود نیتروژن برای گندم در مقادیر مختلف بارندگی (در منطقه مراغه)
Irrigation water Scarcity is the major limiting factor for crop production in irrigated farming. Therefore, optimal use of water is influenced by seasonal rainfall especially where the water price is high. Nitrogen also plays a key role in plant nutrition. In this study, wheat grain yield production as a function of applied water (irrigation plus seasonal rainfall) and nitrogen fertilizer (appl...
متن کامل